Inhalt des Dokuments
Forschung im Fachgebiet
Das Fachgebiet Theoretische Grundlagen der Kommunikationstechnik (CommIT) konzentriert sich auf die Grundlagenforschung sowie auf die angewandte Forschung der Kommunikationstheorie, Informationstheorie, Signalverarbeitung und Netzwerke. Ein besonderer Schwerpunkt liegt hierbei auf dem Bereich der drahtlosen Kommunikationssysteme. Auf diesen Gebieten hat das Fachgebiet erfolgreich verschiedene Projekte eingeworben. Eine Liste der aktuell laufenden und öffentlich geförderten Projekte finden Sie hier im Anschluss. Zusätzlich zu den öffentlich geförderten Projekten pflegt das Fachgebiet eine gute Zusammenarbeit mit verschiedenen Partnern aus der Industrie.
Neben der theoretischen Forschung entwickelt und betreibt das Fachgebiet auch verschiedene Testsysteme. Eine Auswahl dieser Testsysteme finden Sie hier unter Testsysteme und Prototypen [1].
Abgeschlossene Projekte finden Sie hier [2].
Da Englisch die vorherrschende Sprache in der aktuellen Forschung ist, sind große Teile dieser Seite in Englisch verfasst. Bei weiteren Fragen können Sie sich gerne an uns wenden.
A.v.H. - Prof. Caire - Alexander von Humboldt Professorship
A.v.H. - Prof. Caire - Alexander von Humboldt Professorship |
---|
|
CARENET - Content-Aware Wireless Networks: Fundamental Limits, Algorithms, and Architectures
CARENET – Content-Aware Wireless Networks
[6] |
---|
The CARENET project has received funding from European Research Council (ERC) under the European Union with call details Advanced Grants (AdG), PE7, ERC-2017-ADG.
|
CoSIP - Compressed Sensing and Information Processing - Phase II
CoSIP - DFG Special
Focus Program:
Compressed Sensing and Information Processing
- Phase II |
---|
Phase I of this project focused
on exploiting the structure of multipath propagation to solve the
dimensionality bottleneck problem of massive MIMO. Our results in
Phase I clearly indicate that the structure to be exploited resides in
the "invariants" of the channel, i.e., in those quantities
that remains constant over a large time interval and a large frequency
bandwidth. In particular, these invariants are contained, implicitly
or explicitly, in the channel second-order statistics. Remarkably, our
intuition and findings during the first 3 years of the project have
become "instant classics" and literally thousands of papers
have followed in our footprints, such that today the approaches that
we have advocated at the beginning of the first funding phase have
become mainstream. In Phase II, we build on the experience
and on the successes of Phase I and we broaden our horizon from the
single massive MIMO system to a whole wireless network, where the
large dimensionality arising from large number of users and base
station antennas is the salient feature. We identify three new
overarching objectives and lay out our workplan organized in three
corresponding work packages. The first focuses on the efficient
representation of large dimensional channel vectors for general array
geometries, where the aim is to generalize Szego’s theorem on large
Toeplitz matrices to families of non-Toeplitz Covariance matrices
generated by given array manifolds. The second consider the
distributed sampling and learning of the path gain function between
any two points of a given coverage area, referred to as network
"soft" topology. Finally, the third consider a bilinear
compressed sensing problem arising from multichannel splicing, that
is, combining multiple narrowband observations in order to obtain a
wideband measurement of the channel impulse response and achieve a
sufficiently high timing resolution such that precise ranging for
indoor position using conventional RF signals is possible. We outline
mathematically precise problem definitions and concrete methodologies
to address the problems, corroborated by preliminary results and
previous background results obtained by the PI in their previous work.
As such, although the objective of this proposal are challenging, we
are confident that significant progress can be made in time span of
the project. |
SERENA - gan-on-Silicon Efficient mm-wave euRopean systEm iNtegration plAtform
SERENA
- European Union Horizon 2020 project: [8]gan-on-silicon efficient mm-wave european system integration platform [9] |
---|
|
Non-Negative Structured Regression (Non-Negative Structured Regression in Communication and Data Science)
Non-Negative Structured Regression - DAAD
Programm: Fachbezogene Partnerschaften mit Hochschulen in
Entwicklungsländern Eine Hochschulkooperationen mit dem African Institute for Mathematical Sciences (AIMS) Südafrika, Kamerun, Ghana |
---|
|
Self-Organizing Complex Networks: A Mean-Field Game Approach
Self-Organizing
Complex Networks: A Mean-Field Game Approach - DAAD
Programm: Fachbezogene Partnerschaften mit Hochschulen in
Entwicklungsländern Eine Hochschulkooperationen mit dem African Institute for Mathematical Sciences (AIMS) Südafrika, Kamerun, Ghana |
---|
This project is concerned with
two subjects, Mean-Field theory and Optimal transport in statistics
and engineering. Mean-Field theory is a powerful tool to efficiently approximate the behavior of a complex system involving infinitely many agents. In this approximation process, the mean-field replaces the agents' interactions; That is, the average collective effect of the agents becomes the basis of analysis. Mean-field theory finds applications in several fields and in recent years, it has gained popularity in game theory, artificial intelligence, and engineering. Furthermore, the theory of Optimal transport has deep connections with recent several research fields, e.g., efficient resource allocation in wireless communications and also domain adaptation in learning and trained algorithms. It stands as a powerful tool to study flows and analyze energy functionals on the space of probability measures. The theory has also attracted the attention of communication society to address the several problems that arise in wireless networks. In this project, the goal is to analyze complex systems using the mean-field and transport theory in different settings, for example, when the agents have different types, or when the communication between the agents is constrained and limited. The theoretical results are then applied to optimize the ultra-dense wireless communication networks. |
BIFOLD - Berlin Institute for the Foundations of Learning and Data
BIFOLD - Berlin Institute for the Foundations
of Learning and Data |
---|
The complete BIFOLD project website: $this->_build_link_list($this->linkCount++, "http://bifold.berlin", "bifold.berlin [12]") |
tsysteme_und_prototypen/
eschlossene_projekte/
o3/Report-activity-2014-research_20summary.pdf
o3/Report-activity-2015-research_20summary.pdf
o3/Report-activity-2016-research_20summary.pdf
uelle_projekte/carenet/
uelle_projekte/carenet/
uelle_projekte/serena/
uelle_projekte/serena/
po3/SERENA-general-presentation.pdf
JiZlZTdkZDdhMDMxMDRjODRkOD01RTJBQUMzRV80NjU2NF8xNTI4MF8
xJiZiOWFhZTM5M2I0Njg5MDc9MTIzMiYmdXJsPWh0dHAlM0ElMkYlMk
ZiaWZvbGQlMkViZXJsaW4=