Inhalt
zur Navigation
Forschung im Fachgebiet
Das Fachgebiet Theoretische Grundlagen der Kommunikationstechnik (CommIT) konzentriert sich auf die Grundlagenforschung sowie auf die angewandte Forschung der Kommunikationstheorie, Informationstheorie, Signalverarbeitung und Netzwerke. Ein besonderer Schwerpunkt liegt hierbei auf dem Bereich der drahtlosen Kommunikationssysteme. Auf diesen Gebieten hat das Fachgebiet erfolgreich verschiedene Projekte eingeworben. Eine Liste der aktuell laufenden und öffentlich geförderten Projekte finden Sie hier im Anschluss. Zusätzlich zu den öffentlich geförderten Projekten pflegt das Fachgebiet eine gute Zusammenarbeit mit verschiedenen Partnern aus der Industrie.
Neben der theoretischen Forschung entwickelt und betreibt das Fachgebiet auch verschiedene Testsysteme. Eine Auswahl dieser Testsysteme finden Sie hier unter Testsysteme und Prototypen.
Abgeschlossene Projekte finden Sie hier.
Da Englisch die vorherrschende Sprache in der aktuellen Forschung ist, sind große Teile dieser Seite in Englisch verfasst. Bei weiteren Fragen können Sie sich gerne an uns wenden.
CARENET - Content-Aware Wireless Networks: Fundamental Limits, Algorithms, and Architectures
CARENET – Content-Aware Wireless Networks |
---|
The CARENET project has received funding from European Research Council (ERC) under the European Union with call details Advanced Grants (AdG), PE7, ERC-2017-ADG.
|
CoSIP - Compressed Sensing and Information Processing - Phase II
CoSIP - DFG Special Focus Program: Compressed Sensing and Information Processing - Phase II |
---|
Phase I of this project focused on exploiting the structure of multipath propagation to solve the dimensionality bottleneck problem of massive MIMO. Our results in Phase I clearly indicate that the structure to be exploited resides in the "invariants" of the channel, i.e., in those quantities that remains constant over a large time interval and a large frequency bandwidth. In particular, these invariants are contained, implicitly or explicitly, in the channel second-order statistics. Remarkably, our intuition and findings during the first 3 years of the project have become "instant classics" and literally thousands of papers have followed in our footprints, such that today the approaches that we have advocated at the beginning of the first funding phase have become mainstream. In Phase II, we build on the experience and on the successes of Phase I and we broaden our horizon from the single massive MIMO system to a whole wireless network, where the large dimensionality arising from large number of users and base station antennas is the salient feature. We identify three new overarching objectives and lay out our workplan organized in three corresponding work packages. The first focuses on the efficient representation of large dimensional channel vectors for general array geometries, where the aim is to generalize Szego’s theorem on large Toeplitz matrices to families of non-Toeplitz Covariance matrices generated by given array manifolds. The second consider the distributed sampling and learning of the path gain function between any two points of a given coverage area, referred to as network "soft" topology. Finally, the third consider a bilinear compressed sensing problem arising from multichannel splicing, that is, combining multiple narrowband observations in order to obtain a wideband measurement of the channel impulse response and achieve a sufficiently high timing resolution such that precise ranging for indoor position using conventional RF signals is possible. We outline mathematically precise problem definitions and concrete methodologies to address the problems, corroborated by preliminary results and previous background results obtained by the PI in their previous work. As such, although the objective of this proposal are challenging, we are confident that significant progress can be made in time span of the project. |
SERENA - gan-on-Silicon Efficient mm-wave euRopean systEm iNtegration plAtform
SERENA - European Union Horizon 2020 project: gan-on-silicon efficient mm-wave european system integration platform |
---|
|
Non-Negative Structured Regression (Non-Negative Structured Regression in Communication and Data Science)
Non-Negative Structured Regression - DAAD Programm: Fachbezogene Partnerschaften mit Hochschulen in Entwicklungsländern Eine Hochschulkooperationen mit dem African Institute for Mathematical Sciences (AIMS) Südafrika, Kamerun, Ghana |
---|
|
Self-Organizing Complex Networks: A Mean-Field Game Approach
Self-Organizing Complex Networks: A Mean-Field Game Approach - DAAD Programm: Fachbezogene Partnerschaften mit Hochschulen in Entwicklungsländern Eine Hochschulkooperationen mit dem African Institute for Mathematical Sciences (AIMS) Südafrika, Kamerun, Ghana |
---|
This project is concerned with two subjects, Mean-Field theory and Optimal transport in statistics and engineering. Mean-Field theory is a powerful tool to efficiently approximate the behavior of a complex system involving infinitely many agents. In this approximation process, the mean-field replaces the agents' interactions; That is, the average collective effect of the agents becomes the basis of analysis. Mean-field theory finds applications in several fields and in recent years, it has gained popularity in game theory, artificial intelligence, and engineering. Furthermore, the theory of Optimal transport has deep connections with recent several research fields, e.g., efficient resource allocation in wireless communications and also domain adaptation in learning and trained algorithms. It stands as a powerful tool to study flows and analyze energy functionals on the space of probability measures. The theory has also attracted the attention of communication society to address the several problems that arise in wireless networks. In this project, the goal is to analyze complex systems using the mean-field and transport theory in different settings, for example, when the agents have different types, or when the communication between the agents is constrained and limited. The theoretical results are then applied to optimize the ultra-dense wireless communication networks. |
BIFOLD - Berlin Institute for the Foundations of Learning and Data
BIFOLD - Berlin Institute for the Foundations of Learning and Data |
---|
The complete BIFOLD project website: bifold.berlin |